Product Description

ATEK750N3 is a wideband frequency mixer covering 5 to 28 GHz RF and LO, DC to 8 GHz IF frequency range. Mixer can be used for both upconversion and downconversion applications.
ATEK750N3 provides low loss over wideband. This allows users to easily realize wideband receiver frontends.
Mixer is housed in a compact $3 \times 3 \mathrm{~mm}$ low cost SMD package, input and output are matched to 50 ohms internally.
Evaluation Board, bare die, custom package, and module options are available upon request.

Product Features

- Frequency Range: 5-28GHz
- Low Loss: 8 dB
- $3 \times 3 \mathrm{~mm}$ compact size

Applications

- Wideband Receivers
- SDR
- Test Equipment
- Radar

Functional Block Diagram

คワ - \square ㄴ

Electrical Specifications

Conditions unless otherwise specified: Typical, T=25 C, CW.

Parameter		Min	Typ	Max	Units
Operational Frequency Range	RF	5		28	GHz
	LO	5		28	
	IF	DC		8	
Conversion Gain LO $=13 \mathrm{dBm}$	6 GHz		-10		dB
	12 GHz		-7		
	16 GHz		-8.5		
	20 GHz		-7.8		
	26 GHz		-9.9		
RF Return Loss			-8		dB
LO Return Loss			-8		dB
IF Return Loss			-10		dB
Input IP3					dBm
Operating Temperature		-40		85	${ }^{\circ} \mathrm{C}$

ATEK750N3

Typical Performance Plots

Conditions unless otherwise specified: Typical, T = 25 C, CW. Downconverter.

Conversion Gain vs. LO Power, IF=1 GHz Lower Sideband

Conversion Gain vs. LO Power, $\mathrm{IF}=6 \mathrm{GHz}$, Upper Sideband

Conversion Gain vs. IF Frequency, LO Power Upper Sideband, RF=16 GHz

Conversion Gain vs. LO Power, $\mathrm{IF}=3 \mathrm{GHz}$, Upper Sideband

Conversion Gain vs. LO Power, IF=8GHz, Upper Sideband

Typical Performance Plots

Conditions unless otherwise specified: Typical, T=25 C, CW. Downconverter, Upper Sideband

RF Return Loss vs. LO Power, $\mathrm{LO}=8 \mathrm{GHz}$

LO Return Loss vs. RF Power, RF=8GHz

IF Return Loss vs. RF Power, RF=8 GHz

RF Return Loss vs. LO Power, LO=18 GHz

LO Return Loss vs. RF Power, RF=18GHz

IF Return Loss vs. RF Power, RF=18GHz

Typical Performance Plots

Conditions unless otherwise specified: Typical, T=25 C, CW. Downconverter, Upper Sideband

IF Return Loss vs. LO Power, $\mathrm{LO}=8 \mathrm{GHz}$

IF Return Loss vs. LO Power, LO=18 GHz

Pin Description

Pin Number	Pin Name	Description
2	LO	LO input/output pin. This pin is AC coupled.
5	IF	RF input/output pin. If the DC voltage level on IF line is not equal to 0 V, an external DC block capacitor is required.
8	RF	RF input/output pin. If the DC voltage level on RF line is not equal to 0 V, an external DC block capacitor is required.
$10-12$	NC	These pins are not internally connected. Can be grounded on the PCB.

Applications Information

Typical application schematic to operate the mixer is given below.

ATEK750N3 mixer can be used for both frequency up conversion and down conversion applications.
For frequency up conversion applications input signal is applied to IF pin, LO signal is applied to LO pin. Frequency upconverted signal goes to RF pin as an output.
For frequency down conversion applications input signal is applied to RF pin, LO signal is applied to LO pin. Frequency down converted signal goes to IF pin as an output. LO and RF ports are interchangeable.

All datasheet plots are generated by using a connectorized evaluation board (EVB) with the application schematic provided above. PCB transmission line losses are de-embedded to plot the Conversion Gain data.
The NC pins of the Mixer are connected to the GND on the PCBs used to generate the plots shown in this document.
n • D A s

Absolute Maximum Ratings

Parameter	Value/Range
IF Sink/Source Current	TBD
RF, LO, IF Input Power	TBD
Storage Temperature	-55 to $+125^{\circ} \mathrm{C}$

Operation of this device outside the parameter ranges given above may cause damage. These parameters should not be applied simultaneously.

Mechanical and Marking Information

TOP VIEW

SIDE VIEW

BOTTOM VIEW

NOTES

1. JEDEC OUTLINE: MO-220
2. ALL DIMENSIONS IN MM
3. TOLERENCE $I N$ X. $X X= \pm 0.15$ X. $X X X= \pm 0.050$

N ロ D S

Handling Precautions

Caution!
ESD-Sensitive Device
Handle Accordingly

Contact Information

For the latest specifications, additional product information, support, and sales.
Web: www.atekmidas.com
Tel: +90-212-483-71-67
Email: support@atekmidas.com

Notice

This document and its contents are property of ATEK MIDAS. ATEK MIDAS has the right to change the document at any time without notice. ATEK MIDAS distributes this document as a service to its customers. ATEK MIDAS supports its customers to help them create market leader products. Customer is responsible from choosing the product and the configuration the product. This document is provided `as is` and does not provide any warranty.

Customer is responsible for the usage of this document, the information provided in the document and the usage of products. ATEK MIDAS shall have no responsibility from the customer products, customer applications and doings of customers.

Revisions

Revision No	Revision Date	Revision Reason	Section / Page No
1.0	05.07 .2021	Initial Version	

